Sysadmin Guide

Generated on 2025-05-05

Contents

Sysadmin

Data platform oL

Data storage L

Data warehouses
Middleware L e e
Software architecture e e
Network architecture e e e e e e
Tech stack

Hosting requirements
Hardware e e e e e e
Network
Installation L e e

Middleware installation

OpendDK 17 o
PostgreSQL 14 o
NZINX L e e e e e e e e e e e e e
Redis o e
Apache Pulsar

Installation L e e e e

Configuration L e e
Extra e e

Analytics Platform installation
USer e

JAR files . . . L
Systemd e e
PostgreSQL« . L e e
USEIS . . o v v o e e
Databases
Configuration e e e

CO OO WwW

oo 0o 0o Qo

APT gateway e e
Identity
Data pipeline
Encryption Lo e
Data cache e
Data storage e e e
Read me e e
Debug e

ClickHouse installation
Installation L e e e e e e e e
Access control
Password type e e
Database and admin user e
Performance tuning e
Logging

Apache Superset Installation
PostgreSQL e
Python
Apache Superset L
Installation oL
Configuration L e
Reset password L
Upgrade o e
Systemd e e
NZINX . . o v v o e e e e e e e e e e e e e
Setup . . .
ClickHouse
Apache Superset L e

DHIS2 Superset Gateway installation
JAR file . . . o e
Systemd L e e e
Configuration L e e
Proxy
Logging e e
Start

Analytics Platform configuration
Default client and user account e e
Default client
Default user account Lo
Data pipeline config L
Environments L e e

UID . o e

30
30
31
32
32
32
34

34
34
35
36
36
36
38
39
39
40
41
42
42

42
43
43
44
45
45
45
45

Properties L e e 47

API configuration 48

Web Ul configuration e 49

Connection test L 49

Initialize data warehouse oL L Lo 50

Single Sign-On (SSO) Configuration 50

OpenID Connect (OIDC)o 50

AP as an OAuth2 client L 50

Create Okta app integration i 51

Record Okta settings securely L 51

Create AP user e 51

Configure SSO in AP e 52

Nginx configuration L e e 52

AP as authorization server 52

Add SSO client configurations 53

Configure nginx for the authorization flow requests 53

Example: Configuring DHIS2 as SSO client 54

Example: Configuring Apache Superset as SSO client 54

Troubleshooting L 56

SSH tunnel for PostgreSQL connection 57

OVErvIEW L e e e 57

Configuration L e e 57

SSH . . o e 57

systemd ... e e e 57

Testing L 58
Sysadmin

Welcome to the installation guide for Analytics Platform (AP from now on). This document is intended for
system administrators who will be setting up and maintaining the environment required to run AP.

AP requires a Linux operating system. An Ubuntu LTS version is the recommended Linux distribution.
The installation guide assumes Ubuntu Linuz as the operating system and the availability of the systemd
process and service manager.

AP supports a variety of public cloud providers, data storage and data warehouses. It can be deployed in
a public cloud environment, and on Linux-based, on-premise server environments.

Data platform

AP uses a data storage provider to ingest and store raw data files from multiple sources in its native format.
The following data storage environments are supported.

Infrastructure Data storage Data warehouse

AWS Amazon S3 ClickHouse

AWS Amazon S3 Amazon Redshift
Azure Azure Blob Storage SQL Database
Azure Azure Blob Storage Synapse
On-prem Local filesystem ClickHouse
On-prem Local filesystem PostgreSQL
On-prem Local filesystem SQL Server

Data storage
AP supports three providers for data storage:

e Amazon S3
e Azure Blob Storage
e Local filesystem

Amazon 83 and Azure Blob Storage are scalable, highly durable and cost-effective public cloud storage
service that allows users to store and retrieve any amount of data from anywhere on the web. These services
integrate well with the vast ecosystem of data services in the AWS and Azure public clouds respectively.

Local filesystem refers to using a regular server with attached disk storage. This approach leverages the file
system of the server and data files are stored in regular directories. As high-speed reading is not a priority,
HHDs (Hard Disk Drives) is a cost-effective and feasible option, as opposed to more expensive and faster
SSDs (Sold State Drives).

Data warehouses

e ClickHouse

e Amazon Redshift

e Azure SQL Database
e Azure Synapse

e PostgreSQL

e Microsoft SQL Server

In on-premise environments, ClickHouse is the preferred data warehouse, due to its open source license,
well-documented server installation and high-perforance data ingestion and data querying.

Middleware

Below is a summary of the necessary middleware components that your system needs to ensure optimal
performance and compatibility.

. - £

Amazon Redshift ClickHouse PostgreSQL SQL Database Synapse Analytics MS SQL Server

AWS Any Any Azure Azure Azure | on-prem
Figure 1: AP software architecture

e OpenJDK 17: A robust and widely-used open-source implementation of the Java Platform which
provides the runtime environment necessary for running Java applications. The AP backend services
are written in Java 17.

e PostgreSQL: Version 14 or later. A powerful, open-source relational database management system
that offers advanced features such as complex queries, foreign keys, triggers, and up-to-date compliance
with SQL standards. The AP backend services use PostgreSQL databases for persistence of data.

e nginx: A high-performance, open-source HT'TP server and reverse proxy that is essential for handling
web traffic, load balancing, and serving static content efficiently.

e Redis: An in-memory, open-source key-value store that provides lightning-fast data retrieval, making
it ideal for caching and supporting real-time analytics, session management, and message brokering.

e Apache Pulsar: An open-source distributed messaging and streaming platform that enables reliable,
scalable, and low-latency data streaming and message queueing, suitable for event-driven applications.

e ClickHouse: A high-performance, open-source columnar database management system designed for
online analytical processing (OLAP) and real-time data analytics at scale. AP utilizes ClickHouse as
data warehouse for analytical data processing and querying.

AP is based on several independent services.

o API Gateway: The API gateway is responsible for routing API requests to the appropriate backend
service. It manages authentication and user sessions.

e Identity: The identity service is responsible for security, authentication, authorization, and for user
and client management.

o Data pipeline: The data pipeline service is the main component of AP and is responsible for data
catalog, data pipelines, views, destinations, workflows, data quality checks.

e« Web UI: The Ul is composed of two web apps written in React and Javascript: The analytics platform
web app and the user management web app.

AP is deployed as executable JAR files, managed by the systemd system and process manager. A Docker
image is planned for but not currently available.

Software architecture

AP is a multi-tenant and web-based software. Multi-tenancy is an application architecture where a single
instance of the software serves multiple “tenants”, also known as clients or organizations. Each tenant’s
data and configuration are isolated, ensuring security and privacy, but they all share the same underlying
infrastructure and codebase. This approach allows for efficient use of resource, as the software instance can
be maintained and updated centrally while still catering to the unique needs of different tenants. For an
on-premise installation scenario used by a single organization, a single tenant can be configured, alterna-
tively, individual tenants for development, testing and production. The high-level architecture of the AP is
described in the below diagram.

User web app AP web app API clients

AP front-end

Apache Superset

i x

API Gateway service

— R

ClickHouse data warehouse

Identity service Redis Data pipeline service ————————» File system data storage
v 41— : Data server
‘ PostgreSQL ‘ Apache Pulsar ‘ PostgreSQL ‘ 5 T -

AP server microservices

Figure 2: AP software architecture

Network architecture

AP network architecture for on-prem hosting environments is described in the diagram below, which shows
a typical example with a DHIS2 instance as data source, AP multi-tenant service and tenant-specific data

storage and data warehouse.

Data center

Y
Superset
ClickHouse
Data Warehouse VM

Internet

|

Analytics Platform VM

Analytics Platform
PostgreSQL

Firewall

DHIS 2 API
PostgreSQL

Network

Figure 3: AP network architecture

Tech stack

The AP software is built using a client-server architecture, where the client (front-end) communicates with
the server (backend) over a REST HTTP API.

e Database: The transactional database for metadata storage is PostgreSQL.

e Backend: Backend services are written in Java using OpenJDK 17. Major frameworks are Spring
Boot, Hibernate and Apache Commons. Testcontainers and JUnit are used for unit and integration
testing.

e Front-end: The front-end web apps are written in Javascript with the React framework and Ant
Design Ul library.

Hosting requirements

AP can be deployed on-premise or in the AWS and Azure public clouds. It can be deployed entirely
on a single virtual machine (VM), or by deploying the various services on separate VMs, such as the
PostgreSQL transactional database, AP software services, ClickHouse data warehouse and Apache Superset
data exploration tool. For an on-premise deployment on a single VM, the following requirements apply.

Hardware

e Virtual machine or physical server

o Linux operating system, Ubuntu 22.04 or 24.04 LTS recommended
« 32 GB RAM

e 8 CPU, ideally 16 or 32 CPU

e 500 GB disk, ideally SSD

Network

e 300 Kbps network bandwith per user
o 1 Gbps network transfer between servers (if more than one)

Installation

e Internet connection with public IP address

e SSH external access

e Terminal root access

e Domain name

e SSL certificate

e SMTP email server

o Backup strategy for local and off-site backups

¢ Monitoring of uptime and alerting for downtime
e Vulnerability scan and security hardening

Middleware installation

This guide covers installation of required middleware for the Analytics Platform (AP). This guide assumes
Ubuntu Linux 22.04 LTS is used as the operating system and that the reader has some familiarity with
Linux and terminals. The text editor used is nano.

Please consider the following:

e There are many approaches to hosting a Java-based application such as AP. This guide outlines one
of them.

e Topics including security hardening and backup strategy are important but beyond the scope of this
guide.

e There may be several managed cloud middleware offerings available. This guide is focused on the
on-premise installation scenario.

OpenJDK 17
Start by updating the operating system packages.

sudo apt update && sudo apt upgrade -y

Install OpenJDK version 17.
sudo apt install -y openjdk-17-jdk

PostgreSQL 14

Install PostgreSQL version 14. Note that later versions of PostgreSQL are supported. The installation of
PostgreSQL is well covered in online installation guides.

sudo apt install -y postgresql-14

The PostgreSQL service is enabled on boot by default after installation. Verify the status of the PostgreSQL
process.

sudo systemctl status postgresql

Set the PostgreSQL authentication method to md5.

sudo nano /etc/postgresql/14/main/pg_hba.conf

Make sure the authentication method is set to md5 for localhost connections, typically by modifying the two

last lines.
host all all 127.0.0.1/32 md5
host all all ::1/128 md5

Adjust performance settings by creating a new configuration file.

nano 10-perf.conf

PostgreSQL performance settings
max_connections = 100
shared_buffers = 768MB

work_mem = 16MB

maintenance_work _mem = 256MB
temp_buffers = 16MB
effective_cache_size = 2GB

checkpoint_completion_target = 0.8
wal_writer_delay = 1s
random_page_cost = 1.1
max_locks_per_transaction

1024
8192

track_activity_query_size

Set owner and permissions for the configuration file, and move it to the PostgreSQL configuration directory.
sudo chown postgres:postgres 10-perf.conf

sudo chmod 644 10-perf.conf

sudo mv 10-perf.conf /etc/postgresql/14/main/conf.d

Restart PostgreSQL to have changes take effect.

sudo systemctl restart postgresql

nginx
Install nginx.

sudo apt install -y nginx

The nginx service is enabled on boot by default after installation. Verify the status of the nginx process.

sudo systemctl status nginx

Configure a proxy cache inside the http element of the nginx config.

sudo nano /etc/nginx/nginx.conf

http {
proxy_cache_path /var/cache/nginx levels=1:2 keys_zone=ap:20m inactive=1d;

}

Configure nginx by creating a file analytics-platform.conf and place it in the nginx sites-available
directory.

10

sudo nano /etc/nginx/sites-available/analytics-platform.conf

Configure nginx with SSL and static web app UI served from Amazon S3.

e SSL and certificate configuration are left out, and should be configured appropriately.

o The apigateway, web and identity services are defined as upstreams and referred to later in the
config.

e The manager and user web apps are served from Amazon S3.

o Additional security hardening may be appropriate in a production environment.

o Update server_name from ap.mydomain.org to match your environment.

Upstream

upstream apigateway {
server 127.0.0.1:8085;
}

upstream web {
server 127.0.0.1:8081;
}

upstream identity {
server 127.0.0.1:8086;

T
Redirect HTTP to HTTPS
server {
listen [::1:80;
listen 80;

server_name ap.mydomain.org;

return 301 https://$host$request_uri;

}

HTTPS server

server {
listen [::]:443 ssl1;
listen 443 ssl;

server_name ap.mydomain.org;
Compression

gzip on;
gzip_types application/json application/javascript text/javascript text/css text/plain;

11

Includes for the default hostname
include default.d/*.conf;

Includes for the default

include default.d/*-https.inc;

hostname under HTTPS

https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
add_header X-Frame-Options DENY;

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
add_header Content-Security-Policy "frame-ancestors 'none';";

Enable Strict Transport Security (HSTS) for https
add_header Strict-Transport-Security '"max-age=31536000" always;

Root URL rewrite to login page

location = / {

return 301 http://$host/manager/;

3

Proxy settings
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header
proxy_set_header

proxy_buffer_size
proxy_buffers

proxy_busy_buffers_size

Proxy forwards

Login check and logout
location /login_check {

proxy_pass

3

location /session_logout

proxy_pass

host
x-forwarded-host
x-real-ip
x-forwarded-for
x-forwarded-proto
x-forwarded-port

128k;
8 128k;
256k;

$http_host;

$host;

$remote_addr;
$proxy_add_x_forwarded_for;
$scheme;

$server_port;

http://identity/login_check;

{

http://identity/session_logout;

12

App

location ~* ~/(appldoc|node_modules) {
rewrite ~/(.*) /$1 break;
proxy_pass http://web;

}

Manager web app to Amazon S3
location /manager {
proxy_intercept_errors on;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_hide_header x—amz-id-2;

proxy_hide_header x—amz-request-id;

proxy_pass http://bao-cloud-manager-prod.s3-website-us-east-1.amazonaws.com/manager;
proxy_cache ap;

User web app to Amazon S3
location /users {
proxy_intercept_errors on;

proxy_set_header x-real-ip $remote_addr;

proxy_set_header x-forwarded-for $proxy_add_x_forwarded_for;

proxy_hide_header x-amz-id-2;

proxy_hide_header x-amz-request-id;

proxy_pass http://bao-cloud-manager-prod.s3-website-us-east-1.amazonaws.com/users;
proxy_cache ap;

Increased max upload size and timeout for file upload API endpoints
location /api/dataPipelines {
proxy_pass http://apigateway/api/dataPipelines;
client_max_body_size 2048M;
proxy_read_timeout 600;
proxy_connect_timeout 600;
proxy_send_timeout 600;

API requests to API gateway service
location /api {

13

proxy_pass http://apigateway/api;
}
}

Enable the server configuration by creating a symlink to the nginx sites-enabled directory.

sudo 1ln -s /etc/nginx/sites-available/analytics-platform.conf \
/etc/nginx/sites-enabled/analytics-platform.conf

Remove the default server configuration file.

sudo rm /etc/nginx/sites-enabled/default

Restart nginx to make changes take effect.

sudo systemctl restart nginx

Redis

Install redis server.

sudo apt install -y redis-server

The redis service is enabled on boot by default after installation. Verify the status of the redis process.

sudo systemctl status redis

Edit the redis configuration file.

sudo nano /etc/redis/redis.conf

Apache Pulsar
Installation

Install Apache Pulsar using the binary distribution. First, download and extract Pulsar using wget. Al-
ternatively, visit the Apache Pulsar downloads page. You may want to check for a later version of Apache
Pulsar.

PULSAR_VER="3.3.3"

wget https://archive.apache.org/dist/pulsar/pulsar-${PULSAR_VER}/apache-pulsar-${PULSAR_VER}-bin.tar.

tar xvfz apache-pulsar-${PULSAR_VER}-bin.tar.gz
mv apache-pulsar-${PULSAR_VER} apache-pulsar

Set root as owner and make binary files executable.

sudo chown root:root -R apache-pulsar

14

gz

https://pulsar.apache.org/download/

sudo chmod +x apache-pulsar/bin/pulsar*

Configuration

Optional: Adjust memory usage by modifying pulsar_env.sh .

sudo nano apache-pulsar/conf/pulsar_env.sh

Set the PULSAR_MEM variable and specify memory usage, adjusted to available server resources.

PULSAR_MEM=${PULSAR_MEM:-"-Xms2g -Xmx2g -XX:MaxDirectMemorySize=2g"}

Optional: Set new port for the HTTP server not to occupy port 8080.

sudo nano apache-pulsar/conf/standalone.conf

Set the webServicePort property to 8098.
webServicePort=8098

Move the directory to suitable installation location.

sudo mv apache-pulsar /var/lib/apache-pulsar

Create a systemd service file called apache-pulsar.service for running Pulsar in standalone mode.

nano apache-pulsar.service

[Unit]
Description = Apache Pulsar

[Service]
ExecStart = /var/lib/apache-pulsar/bin/pulsar standalone -nss

[Installl
WantedBy = multi-user.target

Il note The -nss flag is set due to Pulsar bug 5668.

Set owner and permissions for the init script.

sudo chown root:root apache-pulsar.service

sudo chmod 644 apache-pulsar.service

Move the init script to the systemd directory.

sudo mv apache-pulsar.service /etc/systemd/system/

Reload the systemd daemon.

15

https://github.com/apache/pulsar/issues/5668

sudo systemctl daemon-reload

Enable Pulsar on startup.

sudo systemctl enable apache-pulsar

Start Pulsar.

sudo systemctl start apache-pulsar

Verify that the Pulsar service is running.

sudo systemctl status apache-pulsar

View the Pulsar log.

sudo journalctl -f -u apache-pulsar -n 400

You should now have Pulsar running on port 6650.

To run Pulsar manually.

sudo /var/lib/apache-pulsar/bin/pulsar standalone

Troubleshooting: If Apache Pulsar fails to start due to local data corruption, a solution is to stop the service,

delete the local data director and start the service. Local data will be lost, however, Apache Pulsar topics
are not persisted and the data directory will be recreated on next start.

/var/lib/apache-pulsar/data

Extra

Shorthand notation for installing packages in standard Ubuntu repositories.

sudo apt update && \
sudo apt upgrade -y && \
sudo apt install -y openjdk-17-jdk postgresql-14 nginx redis-server unzip

Analytics Platform installation

This guide covers the installation of the Analytics Platform (AP) software. The AP backend server is
composed of the following services.

o API gateway
e Identity
e Data pipeline

The key and port of each service are described below. The key refers to the name used in configuration
directories and files. The port refers to the default port for which the service will listen for incoming requests.

16

Name Key Port

API gateway bao-api-gateway 8085
Identity bao-identity 8086
Data pipeline bao-data-pipeline 8084

User

Create an operating system user for running the AP services. This guide uses bao-admin as username,
though any valid username can be used. The user has no password. For security reasons, avoiding password-
based login and instead use SSH key-based login is strongly recommended.

sudo adduser --disabled-password --shell /bin/bash bao-admin

For security reasons, the AP services should not run as a privileged user. It may however be practical to
allow sudo without password:

sudo usermod -aG sudo bao-admin
sudo echo "bao-admin ALL=(ALL) NOPASSWD:ALL" > /etc/sudoers.d/50-ap-users

Create the SSH directory, and add the authorized keys file. Add public keys for users which should have
access.

mkdir ~/.ssh
touch ~/.ssh/authorized_keys
chmod 600 ~/.ssh/authorized_keys

SSH

Carefully confirm that public key based authentication to the server is successful, i.e. login without specifying
a password.

Disable password-based authentication for enhanced security. Create a SSH daemon config file.

sudo nano /etc/ssh/sshd_config.d/90-no-passwd-auth.conf

Add the following properties.

PubkeyAuthentication yes
PasswordAuthentication no
PermitRootLogin prohibit-password

Restart the SSH daemon to have the changes take effect.

sudo systemctl restart sshd

17

JAR files
Each service is available as an executable JAR file.

The JAR files should be installed at the following locations.

JAR file File location

bao-api-gateway.jar /var /1ib/bao-api-gateway /bao-api-gateway.jar
bao-identity.jar /var /lib/bao-identity /bao-identity.jar
bao-data-pipeline.jar /var/lib/bao-data-pipeline/bao-data-pipeline.jar

Create the directories manually and make bao-admin the owner.

sudo mkdir /var/lib/bao-api-gateway
sudo mkdir /var/lib/bao-identity
sudo mkdir /var/lib/bao-data-pipeline

sudo chown bao-admin:bao-admin /var/lib/bao-api-gateway
sudo chown bao-admin:bao-admin /var/lib/bao-identity
sudo chown bao-admin:bao-admin /var/lib/bao-data-pipeline

Place the JAR files in the respective directories and make bao-admin the owner.
sudo cp bao-api-gateway.jar /var/lib/baoc-api-gateway

sudo cp bao-identity.jar /var/lib/bao-identity

sudo cp bao-data-pipeline.jar /var/lib/bao-data-pipeline

sudo chown bao-admin:bao-admin /var/lib/bao-api-gateway/bao-api-gateway.jar
sudo chown bao-admin:bao-admin /var/lib/bao-identity/bao-identity.jar
sudo chown bao-admin:bao-admin /var/lib/bao-data-pipeline/bao-data-pipeline.jar

Systemd

The systemd service manager is used to manage the service processes. Each service has a corresponding
systemd service file and a configuration file.

The systemd service files are specified below. The memory allocations should be adjusted to the available
server resources. The systemd service files should be located in the /etc/systemd/system directory.

Systemd file File location

bao-api-gateway.service /ete/systemd /system/bao-api-gateway.service
bao-identity.service /etc/systemd /system /bao-identity.service
bao-data-pipeline.service /etc/systemd /system /bao-data-pipeline.service

18

The bao-api-gateway.service systemd service file.

sudo nano /etc/systemd/system/bao-api-gateway.service

[Unit]

Description = AP API Gateway

[Service]

Environment = "JAVA_OPTS=-Xms256M -Xmx512M"

ExecStart = /var/lib/bao-api-gateway/bao-api-gateway.jar
User = bao-admin

[Installl
WantedBy = multi-user.target

The bao-identity.service systemd service file.

sudo nano /etc/systemd/system/bao-identity.service

[Unit]

Description = AP Identity

[Service]

Environment = "JAVA_OPTS=-Xms1024M -Xmx2048M"

ExecStart = /var/lib/bao-identity/bao-identity. jar
User = bao-admin

[Install]
WantedBy = multi-user.target

The bao-data-pipeline.service systemd service file.

sudo nano /etc/systemd/system/bao-data-pipeline.service

[Unit]

Description = AP Data Pipeline

[Service]

Environment = "JAVA_OPTS=-Xms1024M -Xmx2048M"

ExecStart = /var/lib/bao-data-pipeline/bao-data-pipeline. jar
User = bao-admin

[Install]
WantedBy = multi-user.target

19

To enable the services on boot, invoke the following commands.

sudo systemctl enable bao-api-gateway
sudo systemctl enable bao-identity
sudo systemctl enable bao-data-pipeline

To start a service using systemd, after the JAR files and configuration files are installed, invoke the following
command.

sudo systemctl start bao-data-pipeline

To stop a service using systemd, invoke the following command.

sudo systemctl stop bao-data-pipeline

PostgreSQL

The AP identity and data pipeline services use PostgreSQL for persistence. Note that the PostgreSQL
contains metadata for data pipelines, views and more, while analytical data is stored in a data warehouse
such as ClickHouse. Note that the names given to the databases and users can be adjusted as preferred,
and the following names are suggestions.

Database name Database user Encoding

baoidentity baoidentity UTF-8
baodatapipeline baodatapipeline UTF-8

Users

Create the required users. Switch to the postgres user. Connect to PostgreSQL with the psql CLI.

sudo su postgres
psql

Create users for the identity and data pipeline services. Replace mypasswordl and mypassword2 with a
strong passwords, and take note securely.

create user baoidentity with password 'mypasswordl';

create user baodatapipeline with password 'mypassword2';

Databases

Create databases for the identity and data pipeline services. Set encoding to UTF-8.

20

create database baoidentity with owner baoidentity encoding 'utf8';

create database baodatapipeline with owner baodatapipeline encoding 'utf8';

Exit the CLI with Ctrl+D and then return to the bao-admin user with exit.

Configuration

Each service has a corresponding configuration file.

Config file File location

bao-api-gateway.conf /opt/bao-api-gateway /bao-api-gateway.conf
bao-identity.conf /opt/bao-identity /bao-identity.conf
bao-data-pipeline.conf /opt/bao-data-pipeline /bao-data-pipeline.conf

API gateway

Create the bao-api-gateway.conf configuration file for the API gateway service with chmod 600.

sudo mkdir /opt/bao-api-gateway

sudo nano /opt/bao-api-gateway/bao-api-gateway.conf

Identity service URI
service.identity = http://localhost:8086/

Data pipeline service URI
service.datapipeline = http://localhost:8084/

Allowed origins for CORS
cors.allowed_origins = https://localhost:3000, \
https://localhost:9000

sudo chown bao-admin:bao-admin /opt/bao-api-gateway/bao-api-gateway.conf

21

sudo chmod 600 /opt/bao-api-gateway/bao-api-gateway.conf

Identity

Create the bao-identity.conf configuration file for the identity service. Adjust usernames and passwords
to your environment

sudo mkdir /opt/bao-identity

sudo nano /opt/bao-identity/bao-identity.conf

JDBC connection URL
connection.url = jdbc:postgresql://127.0.0.1/baoidentity

JDBC connection username
connection.username = baoidentity

JDBC connection password (confidential)
connection.password = XXXX

Redis hostname / IP address
redis.hostname = 127.0.0.1

Redis port, optional, default: 6379
redis.port = 6379

Redis password, optional
redis.password =

Pulsar hostname / IP address
pulsar.service_url = pulsar://127.0.0.1:6650

22

Pulsar TLS authentication plugin, optional, TLS only
pulsar.tls.auth.plugin =

Pulsar TLS certificate path, optional, optional, TLS only
pulsar.tls.trusts.certs.file.path =

Pulsar TLS certificate file, optional, TLS only
pulsar.tls.cert.file =

Pulsar TLS key file, optional, TLS only
pulsar.tls.key.file =

System hostname / base URL
system.base_url = https://analytics.mydomain.org

System application title
system.application_title = Analytics Platform

Log email invitation URLs, disable in prod, debugging only
system.user_invite.logging = off

Name of issuer for MFA entries
system.mfa_issuer = Analytics Platform

From address for outgoing emails
email.from.address = noreply@mydomain.org

SMTP hostname or IP address
smtp.host = 127.0.0.1

23

SMTP port, default: 587
smtp.port = 587

SMTP TLS
smtp.tls = true

SMTP username
smtp.user = myuser

SMTP password
smtp.password = XXXX

sudo chown bao-admin:bao-admin /opt/bao-identity/bao-identity.conf

sudo chmod 600 /opt/bao-identity/bao-identity.conf

Data pipeline

Create the bao-data-pipeline.conf configuration file for the data pipeline service. Adjust usernames and
passwords to your environment.

sudo mkdir /opt/bao-data-pipeline

sudo nano /opt/bao-data-pipeline/bao-data-pipeline.conf

JDBC connection URL
connection.url = jdbc:postgresql://127.0.0.1/baodatapipeline

JDBC connection username
connection.username = baodatapipeline

JDBC connection password (confidential)
connection.password = XXXX

Redis hostname / IP address

24

redis.hostname = 127.0.0.1

Redis port, optional, default: 6379
redis.port = 6379

Redis password, optional
redis.password =

Pulsar hostname / IP address
pulsar.service_url = pulsar://127.0.0.1:6650

Pulsar TLS authentication plugin, optional, TLS only
pulsar.tls.auth.plugin =

Pulsar TLS certificate path, optional, optional, TLS only
pulsar.tls.trusts.certs.file.path =

Pulsar TLS certificate file, optional, TLS only
pulsar.tls.cert.file =

Pulsar TLS key file, optional, TLS only
pulsar.tls.key.file =

System hostname / base URL
system.base_url = https://analytics.mydomain.org

Retain temporary data files (debugging only)
system.retain_temp_files = off

Sample size for dataset column type detection, default: 5k
system.max_sample_size = 500000

Email address to send alert messages on error

25

system.error.alert_email = alerts@mydomain.org

Root directory for local file system blob storage
blobstore.root_dir = /var/lib/bao-data-pipeline/data

OpenAI API key
openai.api_key =

OpenAI model, can be 'default', 'gpt-4o-mini', 'gpt-4o0', 'o3-mini'
openai.model = default

API key
google.gemini.api_key =

sudo chown bao-admin:bao-admin /opt/bao-data-pipeline/bao-data-pipeline.conf

sudo chmod 600 /opt/bao-data-pipeline/bao-data-pipeline.conf

Encryption

The data pipeline service encrypts all secrets at the database level, and requires an encryption key to
provided.

1! tip “Note” Store the encryption key in a secure manner!

The encryption key should be stored in a secure and confidential way. If the key is lost, the encrypted
database content cannot be recovered. If the key is exposed, an attacker could use the key to decrypt the
database secrets.

The Tink Java library is used for encryption. An encryption key can be generated using the tink CLI called
Tinkey.

26

The encryption key file name is bao-data-pipeline-key. json and the content is in JSON format.
Download Tinkey from the following URL.
https://developers.google.com/tink/tinkey-overview

Uncompress the tar ball in a suitable location. Generate the key with the following command.

./tinkey create-keyset --key-template AES128_GCM --out-format json

Create and store the encryption key file in the data pipeline configuration directory.

sudo nano /opt/bao-data-pipeline/bao-data-pipeline-key.json

Example encryption key file.

{
"primaryKeyId": 0000000000,
"key": [
{
"keyData": {
"typeUrl": "type.googleapis.com/google.crypto.tink.AesGcmKey",
"value": "{secretl}",
"keyMaterialType": "SYMMETRIC"
1},
"status": "ENABLED",
"keyId": 0000000000,
"outputPrefixType": "TINK"
X
]
}

sudo chown bao-admin:bao-admin /opt/bao-data-pipeline/bao-data-pipeline-key.json

sudo chmod 600 /opt/bao-data-pipeline/bao-data-pipeline-key.json

Data cache

When AP ingests data from various data sources, it caches data in the form of data files, which are temporar-
ily stored on the filesystem of the server where AP is deployed. Depending on the data sources, significant
storage capacity is required. However, data is deleted when a data load process completes, meaning the
data volume will not grow over time.

The data cache directory name is data-pipeline, and located below the configuration directory.
/opt/bao-data-pipeline/data-pipeline

Create the directory manually.

27

CACHE_DIR="/opt/bao-data-pipeline/data-pipeline"
sudo mkdir $CACHE_DIR

sudo chown bao-admin:bao-admin $CACHE_DIR

sudo chmod 755 $CACHE_DIR

Data storage
1! tip “Note” This section applies only for on-premise server data storage environments

When deploying AP in on-premise server environments, take care to provision storage device (disk or
SSD) with appropriate capacity. 500GB is a reasonable starting point. Separate storage devices may be
provisioned for the AP software and for the data storage.

The configuration property blobstore.root_dir in bao-data-pipeline.conf defines the root directory
for data storage on the local filesystem. It allows for storing data on a dedicated storage device (disk or
SSD). The default location is /var/lib/bao-data-pipeline/data. Create the data directory manually.

DATA_DIR="/var/lib/bao-data-pipeline/data"
sudo mkdir $DATA_DIR

sudo chown bao-admin:bao-admin $DATA_DIR
sudo chmod 755 $DATA_DIR

In the following configuration section, the blob store container name will be specified per client (tenant).
In an on-premise environment, create a directory manually to represent the container using the specified
container name below the root data directory. This guide uses bao-ap-client-main as the container name
for the default client, though any container name can be used. The directory should be created in the
following location.

/var/lib/bao-data-pipeline/data/bao-ap-client-main

Create the directory manually. The data and client directories should be located on a storage medium with
appropriate capacity.

CLIENT_DIR="/var/lib/bao-data-pipeline/data/bao-ap-client-main"
sudo mkdir $CLIENT_DIR

sudo chown bao-admin:bao-admin $CLIENT_DIR

sudo chmod 755 $CLIENT_DIR

The data storage location can be defined with the blobstore.root_dir property in the bao-data-pipeline.conf
configuration file.

Read me

The following content is convenient to maintain in a readme.md file.

28

nano readme.md

Analytics Platform

Redts

redis-cli -h 127.0.0.1

Apache Pulsar

sudo systemctl status apache-pulsar

sudo systemctl restart apache-pulsar

sudo journalctl -n 500 -f -u apache-pulsar
Nginz

sudo systemctl status nginx

sudo systemctl restart nginx

sudo tail -f /var/log/nginx/access.log

Apache Superset

sudo systemctl status apache-superset

sudo systemctl restart apache-superset
sudo journalctl -n 500 -f -u apache-superset
AP service status

sudo systemctl status bao-api-gateway

sudo systemctl status bao-identity

sudo systemctl status bao-data-pipeline

AP service restart

sudo systemctl restart bao-api-gateway
sudo systemctl restart bao-identity

29

sudo systemctl restart bao-data-pipeline
AP service logging
sudo journalctl -n 500 -f -u bao-api-gateway -u bao-identity -u bao-data-pipeline -o cat

sudo journalctl -n 500 -f -u bao-data-pipeline

Debug

To adjust the log level for the Java services, append the following parameter to the ExecStartproperty in
the appropriate systemd service file. The com.bao part of the parameter value refers to the package of the
classes for which the logging level will apply.

ExecStart = /var/lib/bao-identity/bao-identity.jar --logging.level.com.bao=debug

ClickHouse installation

Installation

Consult the official ClickHouse production installation documentation for Ubuntu / Debian Linux here.
ClickHouse features a client-server architecture which are installed as separate packages.

e ClickHouse provides a default user named default with a password set during the installation process.
This guide uses admin as the password.

e ClickHouse provides a default database named default.
¢ The main directory for ClickHouse server is /etc/clickhouse-server.

Set up the Debian package repository.

sudo apt-get install -y apt-transport-https \
ca-certificates curl gnupg

curl -fsSL 'https://packages.clickhouse.com/rpm/lts/repodata/repomd.xml.key' | \
sudo gpg --dearmor -o /usr/share/keyrings/clickhouse-keyring.gpg

echo "deb [signed-by=/usr/share/keyrings/clickhouse-keyring.gpgl \
https://packages.clickhouse.com/deb stable main" | \

sudo tee /etc/apt/sources.list.d/clickhouse.list

sudo apt-get update

30

https://clickhouse.com/docs/en/install

Install the deb packages for ClickHouse server and ClickHouse client. Provide a password for the default
user during installation.

sudo apt install -y clickhouse-server clickhouse-client

Enable ClickHouse server on startup.

sudo systemctl enable clickhouse-server

Start ClickHouse server using systemd.

sudo systemctl start clickhouse-server

Verify the status of the ClickHouse process.

sudo systemctl status clickhouse-server

Access control

By default, SQL-driven access control and account management is disabled in ClickHouse. Access control
can be configured by adding new configuration files to directory /etc/clickhouse-server/users.d. To
enable SQL-driven access control for the default user, and to add the default and baocanalytics users
to the default profile, add the following file.

sudo nano /etc/clickhouse-server/users.d/users.xml

Specify the following content in XML format.

<clickhouse>
<users>
<default>
<access_management>1</access_management>
<named_collection_control>1</named_collection_control>
<show_named_collections>1</show_named_collections>
<show_named_collections_secrets>1</show_named_collections_secrets>
<min_os_cpu_wait_time_ratio_to_throw>3</min_os_cpu_wait_time_ratio_to_throw>
<profile>default</profile>
</default>
</users>
</clickhouse>

Set file ownership.

sudo chown clickhouse:clickhouse /etc/clickhouse-server/users.d/users.xml

Restart the service to have the changes take effect.

sudo systemctl restart clickhouse-server

31

Password type
Verify that the password type is set to sha256_password

sudo cat /etc/clickhouse-server/config.xml | grep "<default_password_type>"

Database and admin user
To create a new database called baoanalytics, enter the ClickHouse client.

clickhouse-client

Execute the following SQL statement to create the database.

create database baoanalytics;

Create a new admin user called baoanalytics with password mypassword, associated with the default
profile, with the following SQL statement. Replace mypassword with a strong password, and take note
securely.

create user baocanalytics identified by 'mypassword' profile default;

grant all on *.* to baocanalytics with grant optionm;
Note the importance of the association with the default profile, which ensures that the configuration settings
in a following section take effect.

After an admin user is created, SQL-driven access control can be removed from the default user for security
purposes.

Performance tuning

Memory allocations, caching and oncurrency should be adjusted to the available server resources. Set
server-wide global settings by adding the following file and content.

sudo nano /etc/clickhouse-server/config.d/performance.xml

Specify the following content in XML format. The size unit is bytes. Audit logging is disabled as it typically
generates very large amounts of data.

<clickhouse>
<!-- Memory —-->
<max_server_memory_usage>4294967296</max_server_memory_usage> </-- 4GB -->
<mark_cache_size>104857600</mark_cache_size> </-- 100MB -->
<!-- Connection ——>

<max_connections>100</max_connections>
<max_concurrent_queries>100</max_concurrent_queries>
<max_table_size_to_drop>0</max_table_size_to_drop>
<!-- Logging —-—>

32

<asynchronous_metric_log remove="1"/>
<metric_log remove="1"/>
<query_thread_log remove="1" />
<query_log remove="1" />
<query_views_log remove="1" />
<part_log remove="1"/>
<session_log remove="1"/>
<text_log remove="1" />
<trace_log remove="1"/>
<crash_log remove="1"/>
<opentelemetry_span_log remove="1"/>
<zookeeper_log remove="1"/>
<!-- Merge ——>
<merge_tree>
<max_bytes_to_merge_at_max_space_in_pool>1073741824</max_bytes_to_merge_at_max_space_in_pool>

</merge_tree>

</clickhouse>

Set file ownership.

sudo chown clickhouse:clickhouse /etc/clickhouse-server/config.d/performance.xml

Set user-specific settings by editing the existing users.xml file previously created and adding the following
content.

sudo nano /etc/clickhouse-server/users.d/users.xml

<clickhouse>
<profiles>
<default>
<max_memory_usage>4294967296</max_memory_usage> <!/-- 4GB -->
<max_bytes_before_external_group_by>2147483648</max_bytes_before_external_group_by> </-- 2GB -->
<max_bytes_before_external_sort>2147483648</max_bytes_before_external_sort> </-- 2GB -->

<max_insert_block_size>10485760</max_insert_block_size> </-- 10 MB -->
<max_threads>1</max_threads>
<max_bytes_before_remerge_sort>134217728</max_bytes_before_remerge_sort> </-- 128 MB -->
<enable_json_type>1</enable_json_type>
</default>
</profiles>
<users>
<!-- Users omitted for brevity —-->
</users>
</clickhouse>

33

A convenient GB-to-byte mapping table is found below.

GB Bytes

1073741824
2147483648
3221225472
4294967296
5368709120
6442450944

ST W N

Restart service for changes to take effect.

sudo systemctl restart clickhouse-server

Logging

View ClickHouse log files.

tail -f /var/log/clickhouse-server/clickhouse-server.log
tail -f /var/log/clickhouse-server/clickhouse-server.err.log
View ClickHouse journal log.

sudo journalctl -f -u clickhouse-server

Apache Superset Installation

This guide explains how to install Apache Superset using the pip package installer for Python on Ubuntu
22.04. The source installation is efficient in terms of required memory server resources, and is preferrable
in an on-premise environment.

The guide assumes that a bao-admin user exists, and that PostgreSQL, Redis and nginx are installed.

PostgreSQL

Create a user and database for Superset. Switch to the postgres user and connect to PostgreSQL with the
psql command-line tool.

sudo su postgres
psql

Create the PostgreSQL user for Superset with a strong password. Take note of the password.

34

create user superset with password 'mypassword';

Create the PostgreSQL database for Superset and exit the command-line tool.

create database superset with owner superset encoding 'utf8';

Optional: Verify that PostgreSQL is running and the database is accessible as the superset user.

psql -d superset -U superset -h 127.0.0.1

Python
Install Python 3 and OS dependencies from the Ubuntu package repository.

sudo apt update && sudo apt upgrade -y

sudo apt-get install build-essential libssl-dev libffi-dev python3-dev \
python3-venv python3-pip libsasl2-dev libldap2-dev libpg-dev

Verify the Python version.
python3 -V

Upgrade pip.
pip3 install --upgrade pip

Create an installation directory.

sudo mkdir -p /var/lib/apache-superset

sudo chown bao-admin:bao-admin /var/lib/apache-superset

Create virtual environment in the installation directory.

cd /var/lib/apache-superset

python3 -m venv venv

Activate the virtual environment

source venv/bin/activate

Verify the Python and pip versions in the virtual environment.

python -V
pip -V

Inote Do not change the location of the virtual environment after installation.

35

Apache Superset
Installation
Install Apache Superset, Python packages and the ClickHouse database driver.

pip install apache-superset psycopg2 gunicorn gevent flask_cors pillow

pip install clickhouse-connect

Other relevant driver packages, like Redshift and MS SQL, can be also be installed if required.
pip install sqlalchemy-redshift pymssql

Configuration

Generate a secret encryption key for the Superset config file.

openssl rand -base64 42

Create a config file named superset_config.py in the root Superset installation directory with the following
configuration content. Note that the config file should be located in the root directory, not the venv directory.

nano superset_config.py

Adjust the required configuration values to the environment.

e Set SECRET_KEY to the previously generated secret key.
e Set <superset_pwd> for the the SQLALCHEMY_DATABASE_URI property to the previously created Post-
greSQL password.

Number of worker threads
SUPERSET_WORKERS = 4

Gunicorn server port
SUPERSET_WEBSERVER_PORT = 8089

Enable logging to file
ENABLE_TIME_ROTATE = True

Encryption key
SECRET_KEY = 'mykey'

SuperSet PostgreSQL metadata database connection
SQLALCHEMY_DATABASE_URI = 'postgresql://superset:<superset_pwd>@localhost/superset'

Caching with Redis
CACHE_CONFIG = {

36

'CACHE_TYPE': 'redis',
'CACHE_DEFAULT_TIMEQUT': 3600,
'CACHE_KEY_PREFIX': 'superset_results',
'"CACHE_REDIS URL': 'redis://localhost:6379/0',

}

Flask-WTF flag for CSRF
WTF_CSRF_ENABLED = False
TALISMAN_ENABLED = False

CSRF_ENABLED = False

Add endpoints that need to be exempt from CSRF protection
WTF_CSRF_EXEMPT_LIST = []

A CSRF token that expires in 1 year
WTF_CSRF_TIME_LIMIT = 60 * 60 * 24 * 365

Set this API key to enable Mapbox visualizations
MAPBOX_API_KEY = ''

Enable CORS to allow embedded dashboards
ENABLE_CORS = True
ALLOW_ORIGINS = ['http://localhost:8089']
CORS_OPTIONS = {
'supports_credentials': True,
'allow_headers': ['*'],
'resources':['*x'],
'origins': ALLOW_ORIGINS

Disable CSP due to bug in Superset
TALISMAN_ENABLED = False

Enable proxy headers to support nginx
ENABLE_PROXY_FIX = True

Enable embedded dashboards

FEATURE_FLAGS = {
"EMBEDDED_SUPERSET": True,
"DASHBOARD_RBAC": True,
"EMBEDDABLE_CHARTS": True

37

Dashboard embedding
GUEST_ROLE_NAME = "Gamma"

Set ownership and permissions.

sudo chown bao-admin:bao-admin superset_config.py

sudo chmod 644 superset_config.py

Initialize the PostgreSQL database and create an initial Superset admin user by invoking the following
commands. Take note of the provided username and password.

Set required environment vartiables
export FLASK_APP=superset
export SUPERSET_CONFIG_PATH=/var/lib/apache-superset/superset_config.py

Run database migrations
superset db upgrade

Initialize database
superset init

Create admin user
superset fab create-admin

Optional: Run Superset with Gunicorn to verify the installation.

gunicorn -w 10 -k gevent -t 120 -b 127.0.0.1:8089 "superset.app:create_app()"

The virtual environment can now be deactivated.

deactivate

Reset password
The following commands can be used in the event of needing to reset the password for a user, e.g. the
bao-admin user.

Set required environment vartiables
export FLASK_APP=superset
export SUPERSET_CONFIG_PATH=/var/lib/apache-superset/superset_config.py

Reset password for admin user
superset fab reset-password --username bao-admin

38

Upgrade
To upgrade Superset when a new version is available, navigate to the Superset installation directory and
activate the virtual environment.

source venv/bin/activate

Upgrade the Superset version by executing the command below.

pip install apache-superset --upgrade

Upgrade the database schema by running required migrations, if any.

Set required environment variables
export FLASK_APP=superset
export SUPERSET_CONFIG_PATH=/var/lib/apache-superset/superset_config.py

Run database migrations
superset db upgrade

Deactivate the virtual environment.

deactivate

Restart the systemd Superset service.

Systemd

Create a systemd service file for Superset called apache-superset.service.

nano apache-superset.service

[Unit]
Description = Apache Superset
After = network.target

[Service]

Type = simple

User = bao-admin

Environment = 'FLASK_APP=superset'

Environment = 'SUPERSET_CONFIG_PATH=/var/lib/apache-superset/superset_config.py'

ExecStart = /var/lib/apache-superset/venv/bin/gunicorn -w 10 -k gevent -t 120 -b 127.0.0.1:8089 '"supers

Restart = on-failure
RestartSec = 5s

[Install]
WantedBy=multi-user.target

39

Set ownership, permissions and move the init script to the systemd service directory.

sudo chown root:root apache-superset.service
sudo chmod 644 apache-superset.service

sudo mv apache-superset.service /etc/systemd/system/

Reload the systemd daemon.

sudo systemctl daemon-reload

Enable Superset on boot.

sudo systemctl enable apache-superset

Start Superset.

sudo systemctl start apache-superset

View status.

sudo systemctl status apache-superset

View the logs.

sudo journalctl -n 500 -f -u apache-superset

nginx
Configure nginx by creating a configuration file apache-superset.conf. Requests will be proxied to Guni-
corn, which will be set up later. This guide assumes that SSL and certificates are configured.

nano apache-superset.conf

Configure a Superset server.

e SSL and certificate configuration are left out, and should be configured appropriately.
o Additional security hardening may be appropriate in a production environment.
o Update server_name from superset.mydomain.org to match your environment.

Redirect HTTP to HTTPS

server {
listen [::1:80;
listen 80;

server_name superset.mydomain.org;

access_log off;
log_not_found off;

40

return 301 https://$host$request_uri;

}

HTTPS server

server {
listen [::]:443 ssl1;
listen 443 ssl;

server_name superset.mydomain.org;

Proxy requests to Gunicorn on port 8089
location / {

proxy_pass http://127.0.0.1:8089/;

proxy_redirect off;

proxy_set_header host $host;

proxy_set_header x-real-ip $remote_addr;
proxy_set_header x-forwarded-for $proxy_add_x_forwarded_for;
proxy_set_header x-forwarded-proto $scheme;

proxy_set_header x-forwarded-port $server_port;

}

Set ownership, permissions and move config file to correct location.

sudo chown root:root apache-superset.conf
sudo chmod 644 apache-superset.conf

sudo mv apache-superset.conf /etc/nginx/sites-available/

Enable the server configuration by creating a symlink to the nginx sites-enabled directory.

sudo 1n -s /etc/nginx/sites-available/apache-superset.conf \
/etc/nginx/sites-enabled/apache-superset.conf

Restart nginx to make changes take effect.

sudo systemctl restart nginx

Setup

This section provides various tips for how to set up Apache Superset.

41

ClickHouse

This section assumes that ClickHouse has been installed on the same machine and configured per the
instructions in the middleware installation guide. To set up a ClickHouse data warehouse connection:

e Click Database in the top-right corner.
o Under Supported databases, select ClickHouse Connect (Superset).
e In the basic form, specify the following values.

— Host: 127.0.0.1

— Port: 8123

— Database name: baoanalytics

— Username: baoanalytics

Password: Use password from installation
— Display name: Analytics Platform - ClickHouse
e In the advanced form, in the Performance tab, specify the following values.
— Chart cache timeout: 900 (or adjust as preferred)
— Schema cache timeout: 1
— Table cache timeout: 1
e Click Finish.

Apache Superset
Various considerations when configuring Apache Superset are described below.

e Database connection cache: For databases, the database schema and table metadata will by default
be cached indefinitely. This means that if you add new schemas, tables and columns in the database
after creating the database connection, they will not be reflected in the UI. Hence, the schema and
table cache timeout values may be set to 1.

e Data sets cache: When creating datasets, in the add new dataset screen, the list of schemas and
tables in the respective drop-downs may not refresh properly. To force a refresh, click the Force icon
next to each drop-down.

e User roles: For user roles, ensure that the Public role does not have any permissions, and importantly
does not have the can read on dashboard and can read on chart permissions. If granted, API requests to
the /api/v1/dashboards/ endpoint will return no dashboards, which prevents embedded dashboards
from working properly.

DHIS2 Superset Gateway installation

This guide covers the installation of the DHIS2 Superset Gateway service. The DHIS2 Superset Gateway
is a backend service and API for connecting DHIS2 and Apache Superset.

The gateway provides access control for DHIS2 external dashboards and access and guest tokens for em-
bedded dashboards in Superset. External dashboards are stored in the DHIS2 data store using the DHIS2
data store API.

42

The service key is dhis2-superset-gateway. The service port is 8092.

This guide assumes that a dedicated user for running the service called bao-admin exists.

JAR file

The service is available as an executable JAR file. The filename is dhis2-superset-gateway. jar.
The JAR file should be installed in the following location.
/var/1ib/dhis2-superset-gateway/dhis2-superset-gateway. jar

Create the directory manually and make bao-admin the owner.

sudo mkdir /var/lib/dhis2-superset-gateway

sudo chown bao-admin:bao-admin /var/lib/dhis2-superset-gateway
Place the JAR file in the previously created directory and make bao-admin the owner.
sudo cp dhis2-superset-gateway.jar /var/lib/dhis2-superset-gateway

sudo chown bao-admin:bao-admin /var/lib/dhis2-superset-gateway/dhis2-superset-gateway.jar

Systemd

The systemd service manager is used to manage the service process.

The systemd service file should be located in the /etc/systemd/system directory.
/etc/systemd/system/dhis2-superset-gateway.service

Create the system service file with the following content.

sudo nano /etc/systemd/system/dhis2-superset-gateway.service

[Unit]
Description = DHIS2 Superset Gateway service

[Service]

Environment="JAVA_OPTS=-Xms512M -Xmx1024M"

ExecStart = /var/lib/dhis2-superset-gateway/dhis2-superset-gateway.jar
User = bao-admin

[Installl
WantedBy = multi-user.target

To enable the services on boot, invoke the following command.

43

sudo systemctl enable dhis2-superset-gateway

Configuration

The service is configured with a properties file called dhis2-superset-gateway.properties
The file should reside in the following location.
/opt/dhis2-superset-gateway/dhis2-superset-gateway.properties

Create a configuration file with the following content.

sudo mkdir /opt/dhis2-superset-gateway

sudo nano /opt/dhis2-superset-gateway/dhis2-superset-gateway.properties

Base URL to DHIS2
dhis2.base_url = https://dhis2.mydomain.org

Base URL to Superset
superset.base_url = https://superset.mydomain.org

Username for Superset user account
superset.username = myusername

Password for Superset user account (confidential)
superset.password = XXxX

Origins from which to allow CORS
cors.allowed_origins = http://localhost:3000,\
http://localhost:9000,

44

Proxy

The service provides API endpoints. To make the API endpoints accessible, an HT'TP proxy must be set
up.
This is typically done by specifying a location block in nginz. In the nginx configuration file for DHIS2,

immediately before the location block for DHIS2 itself, specify a location block for the DHIS2 Superset
Gateway service.

server {
..
DHIS2 Superset gateway
location /superset-gateway/ {

proxy_pass http://127.0.0.1:8092/superset-gateway/;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-Port $server_port;
}
}
Logging

The service uses the journalctl tool to view logs. To view log output, invoke the following command.

sudo journalctl -n 500 -f -u dhis2-superset-gateway

Start

The service is started by invoking the following command.

sudo systemctl start dhis2-superset-gateway

Stop

The service is stopped by invoking the following command.

sudo systemctl stop dhis2-superset-gateway

Analytics Platform configuration

This guide covers the configuration of the Analytics Platform (AP) software.

45

Default client and user account

AP features a multi-tenant architecture, which means at least one client (tenant) must be created in order
to use the software. The first time AP is deployed and started, a default client and default user account
will be inserted into the database.

Default client

Property Value

UID WxMvtZb9eNP
Code ADMIN
Name Admin

The default client can be renamed, alternatively, a new client can be created and the default client can be
removed.

Default user account

Property Value
UID Xk6Gfr24R;j7

Username administrator
Password Admin 1234
Name Admin

Il note Change the password of the default user after logging in from profile menu and change password.

It is required to change the password of the default user account after logging in for the first time, and
before making AP available on the network, as the default password is publicly known.

Data pipeline config

The configuration of the infrastructure/cloud provider, the data storage and the data warehouse to for AP
is referred to as the data pipeline config. The data pipeline config can be specified using the API or using
the web UL

Environments

The following infrastructure environments are supported.

Infrastructure Data storage Data warehouse

AWS Amazon S3 Amazon Redshift

46

Infrastructure Data storage Data warehouse

AWS Amazon S3 ClickHouse
Azure Azure Blob Storage SQL Database
Azure Azure Blob Storage Synapse
On-prem Local filesystem ClickHouse
On-prem Local filesystem SQL Server
On-prem Local filesystem PostgreSQL

Configuration of AWS and Azure cloud environments can be done in several ways, is well covered in online
guides. It is hence considered outside the scope of this guide, which will address on-premise deployments
using the local filesystem as blob store (data storage) and ClickHouse or PostgreSQL as the data warehouse.

UID
The UID format specification is as follows:

o Is exactly 11 characters long
o Contains only uppercase letters, lowercase letters and digits
e Starts with a letter

Properties

The following properties are required for the data pipeline config. = The blobStoreConfig and
dataWarehouseConfig objects are required. The publicHostname property is optional and can be
used in situations where AP should connect to the data warehouse using a local IP address, while external
clients should connect using a public hostname. The supersetConfig object is optional, and refers to an
integrated instance of Apache Superset.

Property | Description | Value |

client | Client identifier | UID |

provider | Infrastructure provider, cloud provider/on-premise environment and data warehouse plat-
form. | AWS_REDSHIFT, S3_CLICKHOUSE, AZURE_SQL_SERVER, AZURE_SYNAPSE, LOCAL_CLICKHOUSE,
LOCAL_SQL_SERVER, LOCAL_POSTGRESQL |

blobStoreConfig | Configuration for blob store, i.e. data storage environment | Object |

identity | AWS: Access key. Azure: Storage account name. On-prem: NA. | String |

credential | AWS: Secret key. Azure: Storage account key. On-prem: NA. | String |

container | AWS: Bucket name. Azure: Container name. On-prem: Root directory name. | String |
account | Azure: Storage account name. AWS and on-prem: NA. | String |

dataWarehouseConfig | Data warchouse configuration | Object |

hostname | Data warehouse hostname | String |

publicHostname | Data warehouse public hostname (optional) | String |

database | Database name | String |

username | Data warehouse admin account username | String |

47

password | Data warehouse admin account password | String |

iamRoleArn | AWS: Redshift IAM role ARN. Azure and on-prem: NA. | String |
supersetConfig | Apache Superset configuration (optional) | Object |

url | Superset domain name | String |

username | Superset username | String |

password | Superset password | String |

databaseld | Superset AP database identifier | Integer |

API configuration

The data pipeline config can be configured using the API:
POST /api/dataPipelineConfig

Content-Type:application/json

The configuration payload in JSON format using local filesystem for data storage and ClickHouse as data
warehouse can be defined as below. Value na refers to “not applicable”. Under blobStoreConfig, field
bao-ap-client-main refers to the directory below the data storage directory on the local file system.

{
"client": "TKcmL3RbA3I",
"provider": "LOCAL_CLICKHOUSE",
"blobStoreConfig": {

"identity": "na",
"credential": "na",
"container": "bao-ap-client-main"

1,

"dataWarehouseConfig": {
"hostname": "127.0.0.1",
"publicHostname": null,

"database": "baoanalytics",
"username": "baoanalytics",
"password": "{secret}"

},
"supersetConfig": {
"url": "https://superset.mydomain.org",
"username": "admin",
"password": "{secret}",
"databaseId": 1

48

‘Web UI configuration

The data pipeline can be be configured using the web UI. The steps assumes being logged in as the relevant
client.

e From the top-right context menu, click Clients.

e Select the relevant client name.

e Click Manage data pipeline config.

e Click Update.

e Enter the required values using the information above.
¢ Click Update.

An example of values to use with the local server filesystem as data storage and ClickHouse as data warehouse
in configuration form is found below.

Field Value

Client Prefilled

Provider Local - ClickHouse
Blob store config

Identity na

Credential na

Container bao-ap-client-main
Account

Data warehouse config

Hostname 127.0.0.1

Public hostname

Username baoanalytics
Password {secret}

IAM role ARN
Superset config

URL https://superset.mydomain.org
Username admin

Password {secret}

Database ID 1

Connection test

In the web UI, the data pipeline config page offers testing the blob store connection and the data warehouse
connection.

e To test the blob store connection, click Test blob store connection.
e To test the data warehouse connection, click Test data warehouse connection.
e To test the Apache Superset connection, click Test Superset connection.

49

A window will open and indicate the test outcome.

Initialize data warehouse
The support data warehouses may require initial setup.
e To perform the work to initialize the datawarehouse, click Initialize data warehouse.

If the initialization is done multiple times, the operation will fail, but will not cause an invalid state.

Single Sign-On (SSO) Configuration

The Analytics Platform (AP) implements a comprehensive authentication system based on OpenID Connect
(OIDC), a protocol built on top of OAuth 2.0. The system features a dual-role architecture that allows AP
to function both as an OpenlID Connect client and as an authorization server.

OpenlD Connect (OIDC)

AP leverages Spring Security’s OAuth2/OpenID Connect (OIDC) support with the following key compo-
nents.

Client implementation

e Supports multiple identity providers per client through a multi-tenant architecture.
e Handles standard OpenID Connect scopes: openid, profile, and email.

Authorization Server implementation

e Provides OAuth2 authorization server capabilities through Spring Authorization Server
e Supports standard OAuth2 grant types:

— Authorization Code

— Refresh Token

— Client Credentials
e Implements OpenID Connect endpoints:

— Authorization endpoint: /oauth2/authorize

— Token endpoint: /oauth2/token

— UserInfo endpoint: /oauth2/userinfo

— JWKS endpoint: /.well-known/jwks.json
e Supports dynamic client registration

AP as an OAuth2 client

In this role, AP authenticates users against external identity providers (e.g., Okta, Azure AD). This section
explains how to set up an SSO configuration using Okta as the identity provider. Okta is a popular identity
and access management platform which supports the OpenID Connect protocol. The following describes
the steps to set up AP as an OAuth2 client.

50

Create Okta app integration
In this step we will create an Okta web app integration.

o Navigate to Applications > Applications.

¢ Click Create app integration.

e Under Sign-in Method, select OIDC - OpenID Connect.

e Under Application type, select Web application, and click Next.

e Under App integration name, enter a descriptive name like: BAO Analytics Platform Inte-
gration.

e Under Grant type > Client acting on behalf of itself, enable Client Credentials.

e Under Client acting on behalf of a user, make sure Authorization Code is enabled and other
options are disabled.

o For Sign-in redirect URISs, enter https://manager.baosystems.com/oauth2/code/0CC4TI2Fdwl/okta.
The pattern is https://{ap-base-urll}/oauth2/code/{ap-client-id}/{provider-key}. The
ap-base-url is manager.baosystems.com. Make sure to replace ap-client-id with the id of your
organization in the AP. The provider-key is the provider name in lowercase, e.g., okta for Okta.

e Leave Trusted Origins blank.

e For Assignments, select Allow everyone in your organization to access.

e Click Save.

e In the Assignments tab in the application overview, ensure that the relevant people are assigned.

Record Okta settings securely
In this step we will take note of the relevant Okta settings and credentials.

¢ Go to the General tab in the application overview screen.

e Take note of the following settings by clicking the Copy to clipboard buttons. These settings will be
used to create an SSO configuration in AP. The settings should be considered secrets and stored in a
secure way.

— Client ID
— Client secret
— Okta domain
e Log out of the Okta portal, to allow logging back in later.

Create AP user

An AP user must be created for every Okta user that needs to log in to AP. The AP user is mapped to the
Okta identity via the AP user SSO Authentication ID field. User roles and user groups can be granted
to the AP user as usual.

e Log in to AP using a regular user with authority to create users.
¢ Go to Users.
e Create a new AP user, or update an existing one.

51

o Check Enable SSO and enter your Okta username (email) in the Authentication ID field that is
displayed.

e Select appropriate user roles.

o Click Save.

Configure SSO in AP
In this step we will configure AP to authenticate with Okta by creating an SSO provider configuration.

e Log in to AP as an admin user (with MANAGE_CLIENT and MANAGE_SSO_PROVIDER_CONFIG authorities).
e At the top-right of the screen, click on your username and select Clients from the dropdown.
« Click on your client name.
e Select Manage SSO Provider config
o Enter the OKTA credentials recorded previously:

— Provider - Select OKTA from the dropdown.

— SSO Client ID - Enter the OKTA Client ID.

— SSO Client Secret - Enter the OKTA Client Secret.

— SSO Client Domain - Enter the OKTA domain URL.

— Mapping Claim - Enter email.

— Click Save.

Nginx configuration

Update the nginx configuration as follows.

sudo nano /etc/nginx/sites-available/analytics-platform.conf

Add the following location block.

location /oauth2 {
proxy_pass http://identity/oauth?2;
}

Restart nginx to make changes take effect.

sudo systemctl restart nginx

AP as authorization server

In this role, AP provides authentication services to other applications. This section describes the process
for configuring SSO clients for the AP Authorization Server service. The section covers:

. Adding SSO client configurations

. Configuring nginx for the authorization flow requests

. Example: Configuring DHIS2 as a client for SSO

. Example: Configuring Apache Superset as a client for SSO

=W N

52

Add SSO client configurations

The /api/ssoClientConfig endpoint manages client configuration details for SSO clients. This requires
the ROLE_MANAGE_SSO_CLIENT_CONFIG role.

Create new SSO Client

POST /api/ssoClientConfig
Content-Type: application/json

Body
{

"clientName": "data.baosystems.com",
"redirectUris": [
"https://data.baosystems.com/oauth2/code/ap"

1,
"scopes": [
"openid",
"email"
]
}
Response
{
"data": {
"clientId": "OfNwxFCVvNZN2QBFHuQv",
"clientSecret": "ZfCOUyTxLZmRwab5iDYMOIQDmC2spCWFu4i8aARM9oetKsnbzLfJORZFIkj2M2ncx",
"id": "EYwkcaMMZrg"
}
}

I tip “Note” The clientId and clientSecret values are generated by the AP server. The clientSecret
is only shown once when the configuration is first created.

Configure nginx for the authorization flow requests

Nginx needs to be configured to allow authorization flow requests. As a multi-tenant application, auth
requests need to contain the tenant id in the request. For each tenant (AP client), an OpenID Provider
Configuration Request will be:

https://manager.baosystems.com/{ap-client-id}/.well-known/openid-configuration

where ap-client-id is the AP tenant (AP client) id. Update the nginx configuration as follows to allow
this and other oauth requests:

53

location ~ "7/ ([a-zA-Z]{1}[a-zA-Z0-9]{10})/(oauth2|\.well-known/openid-configuration) (.*)$" {
set $client_id $1;
set $sub_pathl $2;
set $sub_path2 $3;

proxy_pass http://identity/$client_id/$sub_pathlsub_path2is_args$args;

Example: Configuring DHIS2 as SSO client

Setting up a DHIS2 instance for SSO is covered in detail in the DHIS2 documentation. In summary, the

dhis.

oidc.
oidc
oidc
oidc
oidc
oidc
oidc
oidc
oidc
oidc
oidc
oidc
oidc

conf file needs to be updated as follows:

oauth2.login.enabled = on

.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.
.provider.

ap.
ap.
ap.
ap.
ap.
.user_info_uri = https://manager.baosystems.com/0CC4TI2Fdwl/oauth2/userinfo

ap

ap.
ap.
ap.
ap.
ap.
.logout.redirect_url = https://{dhis2-server-url}/

client_id = dkhY3Z6z01qDkdL7dMBg

client_secret = bcSfmL8KjzvM1CTt2VmeUC1IEzxPiPOLPzGabl jr5J4rVtHtmZZ59piFBkweyi36
mapping_claim = email

authorization_uri = https://manager.baosystems.com/0CC4TI2Fdwl/oauth2/authorize
token_uri = https://manager.baosystems.com/0CC4TI2Fdwl/oauth2/token

jwk_uri = https://manager.baosystems.com/0CC4TI2Fdwl/oauth2/jwks
end_session_endpoint = https://manager.baosystems.com/0CC4A4TI2Fdwl/logout
scopes = openid

redirect_url = https://{dhis2-server-url}/oauth2/code/ap

display_alias = BAO Analytics Platform

1! tip “Note” 1. This change requires a tomcat restart. In addition, a DHIS2 user needs to be created so
match the AP user. In particular, the OIDC mapping value field of the DHIS2 user must match the
email of the user in AP. Find more details in Okta for DHIS2 guide. 2. The redirect_uri should be
https://{dhis2-server-url}/oauth2/code/ap and it must match the redirect URI used to create the
SSO client config in AP.

Example: Configuring Apache Superset as SSO client

Setting up Apache Superset for SSO is described in the Apache Superset documentation.

Install Authlib

Install Authlib pip package by adding an entry in the superset/docker/requirements-local.txt file:

authlib

Configure superset_config.py

54

https://docs.dhis2.org/en/manage/reference/openid-connect-oidc.html#generic-providers
https://docs.dhis2.org/en/topics/tutorials/configure-oidc-with-okta.html#create-dhis-2-user
https://superset.apache.org/docs/configuration/configuring-superset/#custom-oauth2-configuration

Edit the file superset/docker/pythonpath_dev/superset_config.py and add the following lines:

from flask_appbuilder.security.manager import AUTH_OAUTH
from custom_sso_security_manager import CustomSsoSecurityManager

CUSTOM_SECURITY_MANAGER = CustomSsoSecurityManager
Set the authentication type to UAuth
AUTH_TYPE = AUTH_OAUTH

OAUTH_PROVIDERS = [

{
'name': 'BAO-Analytics-Platform',
'token_key': 'access_token', # Name of the token in the response of access_token_url
'icon': 'fa-address-card',

'remote_app': {
'client_id': 'NHNy6W9ggLJbC89INtw6', # Created via /api/ssoClientConfig
'client_secret': '18mOLS8;jPNxs4L0JQpsvWQVeqpPK5foBNK8MyFiKqobvgKr4DWavSyTkxVNwLCQL',
Created via /apti/ssoClientConfig
'client_kwargs': {
'scope': 'openid' # Scope for the Authorization

I

'jwks_uri': 'https://manager.baosystems.com/0CC4TI2Fdwl/oauth2/jwks', # Uri for token creation

'access_token_method': 'POST', # HTTP Method to call access_token_url

'access_token_params': { # Additional parameters for calls to access_token_url
'client_id': 'NHNy6W9ggLJbC89INtw6'

e

'access_token_headers': { # Additional headers for calls to access_token_url

'"Authorization': 'Basic Tkh0eTZX0WdnTEpiQzgbSU50dzY6bDhtTOxTOGpQTnhzNEwwS1Fwc3ZXUVZ1cXBQSzVmbOJ

'Content-Type': 'application/x-www-form-urlencoded',
P
'api_base_url': 'https://manager.baosystems.com/0CC4TI2Fdwl/',
'access_token_url': 'https://manager.baosystems.com/0CCATI2Fdwl/oauth2/token',
'authorize_url': 'https://manager.baosystems.com/0CC4A4TI2Fdwl/oauth2/authorize’

Will allow user self registration, allowing to create Flask users from Authorized User
AUTH_USER_REGISTRATION = True

The default user self registration role
AUTH_USER_REGISTRATION_ROLE = "Gamma"

95

Il tip “Note” 1. The remote_app.access_token_headers.Authorization value is the base64 encoding of
the client_id:client_secret. 2. Theredirect URL will be https://{superset-webserver}/oauth-authorized/{provic
For the BAO demo instance, that will be: https://analytics.demo.baosystems.com/oauth-authorized/BAO-Analytics-

Configure custom_sso_security_manager.py

Create a superset/docker/pythonpath_dev/custom_sso_security_manager.py file with the following
content:

import logging
from superset.security import SupersetSecurityManager

class CustomSsoSecurityManager (SupersetSecurityManager):

def oauth_user_info(self, provider, response=None):
logging.debug("Oauth2 provider: {0}.".format(provider))
if provider == 'BAO0-Analytics-Platform':
userinfo = self.appbuilder.sm.oauth_remotes[provider].get('ocauth2/userinfo').json()
check the walues of user_name, mail and others wvalues in me variable

return {
'name': userinfo.get('name', ''),
'email': userinfo.get('sub', ''),
'id': userinfo.get('id', ''),
'username': userinfo.get('sub', ''),

'first_name': '"',

'last_name': ''

Troubleshooting
Common issues and solutions are found below.
Invalid Redirect URI

o Ensure the configured redirect URI exactly matches the callback URL.
o Check for trailing slashes and correct protocol (http vs https).

Token Validation Failures

e Check if tokens have expired.
e Validate signature keys are properly configured.

User Attribute Mapping Issues

e Check that the identity provider is sending the required claims.
o Verify attribute mapping configuration.
e Check scopes include necessary permissions.

56

SSH tunnel for PostgreSQL connection

This guide covers how to set up an SSH tunnel to a remote server running PostgreSQL.

Overview

The DHIS2 data pipeline in AP benefits from a database connection to the DHIS2 PostgreSQL database
for efficient loading of huge amounts of data. The database connection must however be set up in a secure
way, and exposing the PostgreSQL port to the outside is not recommended.

Using an SSH tunnel have several security benefits. It adds a layer of encryption to the connection and uses
public-private key authentication, which is more secure than password-based login.

Since using an SSH tunnel requires that the public key of the AP server is installed on the remote PostgreSQL
server, it is important to create a dedicated user with minimal authority which only has access to the
PostgreSQL service, not admin or root access.

Configuration

The local port forwarding approach for SSH tunneling is most appropriate type for remote connections to
PostgreSQL.

SSH

Set up the tunnel with the following command.

ssh -fN -L 5001:localhost:5432 bao-admin@my.domain.org

The -f flag ensures the process is run in the background. The -N flag prevents the command from executing
the command, i.e. avoids logging in and opening a shell. The -L defines the local port number to be forwarded
and the remote host and port number. The local hostname is omitted and defaults to localhost. Using
localhost as the remote host leads traffic to arrive on the localhost address at the remote server, meaning
no changes to the PostgreSQL pg_hba.conf configuration should be necessary.

systemd

To manage the SSH tunnel, in terms of starting, stopping and enable it on server boot, the systemd process
managed can be used. Create a systemd service file with a descriptive name.

nano bao-ssh-tunnel.service

[Unit]

Description = SSH Tunnel for PostgreSQL at my.domain.org
After = network.target

[Service]
ExecStart = /usr/bin/ssh -N -L 5001:localhost:5432 bao-admin@my.domain.org

57

User = bao-admin
Restart = always
RestartSec = 3

[Install]
WantedBy = multi-user.target
sudo chown root:root bao-ssh-tunnel.service

sudo mv bao-ssh-tunnel.service /etc/systemd/system

I note The -f flag must be omitted in the systemd file to avoid the SSH process being deactivated
To enable the SSH tunnel on server boot.

sudo systemctl daemon-reload

sudu systemctl enable bao-ssh-tunnel

To start and stop the SSH tunnel

sudo systemctl start bao-ssh-tunnel

sudo systemctl stop bao-ssh-tunnel

Testing

To test, first ensure that the public key of the local server is installed at the remote server and that you can
SSH into the remote server.

ssh user@my.domain.org

Exit the remote server. Now verify that you can connect to the remote PostgreSQL instance on localhost
using the port defined by the SSH tunnel and the regular psql CLI syntax, where the PostgreSQL database
name is dhis2 and the user is dhis.

psql -h localhost -p 5001 -d dhis2 -U dhis

If the psql CLI returns with a password prompt, the connection is valid.

View current SSH connections with the following command.

sudo netstat -tpln | grep ssh

View current SSH processes with the following command.

ps aux | grep ssh

58

	Sysadmin
	Data platform
	Data storage
	Data warehouses

	Middleware
	Software architecture
	Network architecture
	Tech stack

	Hosting requirements
	Hardware
	Network
	Installation

	Middleware installation
	OpenJDK 17
	PostgreSQL 14
	nginx
	Redis
	Apache Pulsar
	Installation
	Configuration

	Extra

	Analytics Platform installation
	User
	SSH
	JAR files
	Systemd
	PostgreSQL
	Users
	Databases

	Configuration
	API gateway
	Identity
	Data pipeline

	Encryption
	Data cache
	Data storage
	Read me
	Debug

	ClickHouse installation
	Installation
	Access control
	Password type
	Database and admin user

	Performance tuning
	Logging

	Apache Superset Installation
	PostgreSQL
	Python
	Apache Superset
	Installation
	Configuration
	Reset password
	Upgrade
	Systemd

	nginx
	Setup
	ClickHouse
	Apache Superset

	DHIS2 Superset Gateway installation
	JAR file
	Systemd
	Configuration
	Proxy
	Logging
	Start
	Stop

	Analytics Platform configuration
	Default client and user account
	Default client
	Default user account

	Data pipeline config
	Environments
	UID
	Properties
	API configuration
	Web UI configuration
	Connection test
	Initialize data warehouse

	Single Sign-On (SSO) Configuration
	OpenID Connect (OIDC)
	AP as an OAuth2 client
	Create Okta app integration
	Record Okta settings securely
	Create AP user
	Configure SSO in AP
	Nginx configuration

	AP as authorization server
	Add SSO client configurations
	Configure nginx for the authorization flow requests
	Example: Configuring DHIS2 as SSO client
	Example: Configuring Apache Superset as SSO client
	Troubleshooting

	SSH tunnel for PostgreSQL connection
	Overview
	Configuration
	SSH
	systemd

	Testing

